Answer:
three balls have the same speed
Explanation:
In a parabolic motion we have that
[tex]v_{x}=v_{0}cos\alpha\\v_{y}=-gt+v_{0}sin\alpha\\v=\sqrt{v_{x}^{2}+v_{y}^{2}}\\[/tex]
but the time just before the balls hit the ground is
[tex]t=\frac{2v_{0}sin\alpha}{g}[/tex]
Hence we have
ball A
[tex]v=\sqrt{v_{0}^{2}cos^{2}(0)+(-g\frac{2v_{0}sin(0)}{g}+v_{0}sin(0))^{2}}\\v=\sqrt{v_{0}^{2}}=v_{0}[/tex]
ball B
[tex]v=\sqrt{v_{0}^{2}cos^{2}(45)+(-g\frac{2v_{0}sin(45)}{g}+v_{0}sin(45))^{2}}\\v=\sqrt{v_{0}^{2}(\frac{\sqrt{2}}{2})^{2}+v_{0}^{2}(\frac{\sqrt{2}}{2})^{2}}\\v=\sqrt{v_{0}^{2}}=v_{0}[/tex]
ball C
[tex]v=\sqrt{v_{0}^{2}cos^{2}(-45)+(-g\frac{2v_{0}sin(-45)}{g}+v_{0}sin(-45))^{2}}\\v=\sqrt{v_{0}^{2}(\frac{\sqrt{2}}{2})^{2}+v_{0}^{2}(\frac{\sqrt{2}}{2})^{2}}\\v=\sqrt{v_{0}^{2}}=v_{0}[/tex]
Hence, all three balls have the same speed just before hit the groug
vA=vB=vC
I hope this is useful for you
regards