The hypotenuse of the triangle is 21.05 m
Explanation:
Given that a right triangle has a 35 degree angle. The opposite leg to that angle is 12 m long.
We need to determine the hypotenuse of the triangle.
Hypotenuse of the triangle:
The hypotenuse of the triangle can be determined using the formula,
[tex]Sin \ \theta=\frac{opp}{hyp}[/tex]
Substituting [tex]\theta=35, opp= 12[/tex], we have;
[tex]Sin \ 35=\frac{12}{hyp}[/tex]
Simplifying the values, we get;
[tex]hyp=\frac{12}{Sin \ 35}[/tex]
Dividing, we get,
[tex]hyp=\frac{12}{0.57}[/tex]
[tex]hyp=21.05 \ m[/tex]
Thus, the hypotenuse of the triangle is 21.05 m