Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 6z) k C is the line segment from (2, 0, −2) to (5, 4, 2) (a) Find a function f such that F = ∇f. f(x, y, z) = Correct: Your answer is correct. (b) Use part (a) to evaluate C ∇f · dr along the given curve C.

Respuesta :

Answer:

Required solution (a) [tex]f(x,y,z)=xyz+3z^2+C[/tex] (b) 40.

Step-by-step explanation:

Given,

[tex]F(x,y,z)=yz \uvec i +xz\uvec j+(xy+6z)\uvex k[/tex]

(a) Let,

[tex]F(x,y,z)=yz \uvec i +xz\uvec j+(xy+6z)\uvex k=f_x \uvec{i} +f_y \uvex{j}+f_z\uvec{k}[/tex]

Then,

[tex]f_x=yz,f_y=xz,f_z=xy+6z[/tex]

Integrating [tex]f_x[/tex] we get,

[tex]f(x,y,z)=xyz+g(y,z)[/tex]

Differentiate this with respect to y we get,

[tex]f_y=xz+g'(y,z)[/tex]

compairinfg with [tex]f_y=xz[/tex] of the given function we get,

[tex]g'(y,z)=0\implies g(y,z)=0+h(z)\implies g(y,z)=h(z)[/tex]

Then,

[tex]f(x,y,z)=xyz+h(z)[/tex]

Again differentiate with respect to z we get,

[tex]f_z=xy+h'(z)=xy+6z[/tex]

on compairing we get,

[tex]h'(z)=6z\implies h(z)=3z^2+C[/tex]   (By integrating h'(z))  where C is integration constant. Hence,

[tex]f(x,y,z)=xyz+3z^2+C[/tex]

(b) Next, to find the itegration,

[tex]\int_C \vec{F}.dr=\int_C \nabla f. d\vec{r}=f(5,4,2)-f(2,0,-2)=(52+C)-(12+C)=40[/tex]