Answer:
[tex]F = 1.94 \times 10^{20} N[/tex]
Explanation:
Mass of earth ; [tex]M = 5.973 \times 10^{24} kg[/tex]
Mass of moon ; [tex]m = 7.34 \times 10^{22}kg[/tex]
distance between them is ;[tex]d = 3.88 \times 10^{8}m[/tex]
Gravitational constant is given by
[tex]G = 6.67 \times 10^{-11} m^{3}kg^{-1}s^{-2}[/tex]
So , the gravitational force between them is
[tex]F = \frac{GMm}{d^{2}}[/tex]
Insert the values
[tex]F = \frac{6.67 \times 10^{-11} \times 5.973 \times 10^{24} \times 7.34 \times 10^{22}}{(3.88 \times 10^{8})^{2}} N[/tex]
So,
[tex]F = 1.94 \times 10^{20} N[/tex]
Thus , the force between earth and moon is [tex]F = 1.94 \times 10^{20} N[/tex]