Answer:
[tex]\Delta P_m=6\text{kPa}\\\Delta P_e=3\text{kPa}\\\Delta P_p=-9\text{kPa}[/tex]
Explanation:
mole fraction of propane after passing through the separator is [tex]\beta_p[/tex]
[tex]\frac{\beta}{0.6+0.3+\beta}=0.01[/tex]
[tex]\beta =9.09\times 10^-^3[/tex]
mole fractions of ethane [tex]\beta _e[/tex] and methane [tex]\beta_m[/tex] after passing through separator are:
[tex]\beta_e =\frac{0.3}{0.3+0.6+0.00909}=0.66\\\beta_m=\frac{0.6}{0.3+0.6+0.00909}=0.33[/tex]
Change in partial pressures then can be written as:
[tex]\Delta P=(y_2-y_1)\cdot P[/tex] where [tex]y_2[/tex] and [tex]y_1[/tex] are mole fractions after and before passing through the separator
Hence,
[tex]\Delta P_m=(0.66-0.6)\cdot 100\text{k}=6\text{kPa}\\\Delta P_e=(0.33-0.3)\cdot 100\text{k}=3\text{kPa}\\\Delta P_p=(0.01-0.1)\cdot 100\text{k}=-9\text{kPa}[/tex]