Sounds are how we perceive pressure waves in the air. The note F-sharp, more than 2 octaves below the note 'middle C', is a sound wave with an ordinary frequency* f - 61.875 Hertz or cycles/sec Model this note with the sine function, assuming that the amplitude is 1 and the phase shift is 0. g(x) The temperature during the day can be modeled by a sinusoid. Answer the following question given that the low temperature of 30 degrees occurs at 3 AM and the high temperature for the day is 70 degrees. Assuming t is the number of hours since midnight, find an equation for the temperature, T, in terms of t. T(t)

Respuesta :

Answer:

The model of the F-sharp note is  [tex]f(x) = sin(123.75 \pi)[/tex]

The model of the temperature is  [tex]T(t)= 20 sin (\frac{\pi}{2}(t+15) ) +50[/tex]

Step-by-step explanation:

  From the question we are told that

           The  frequency is  [tex]f = 61.875\ Hz[/tex]

            The Amplitude is  A = 1

             The phase shift is  [tex]\theta = 0[/tex]

The angular velocity of a wave can be given as

          [tex]w = 2 \pi f[/tex]

Substituting values

          [tex]w = 2 \pi *61.875[/tex]

             [tex]= 123.75\pi[/tex]

Now the sine function model of this note is given as

            [tex]f(x) = A sin (wt +\theta)[/tex]

Substituting values

           [tex]f(x) = sin(123.75 \pi)[/tex]

The minimum temperature is  [tex]T_{min} = 30^o[/tex]

The maximum temperature is  [tex]T_{max} = 70^o[/tex]

The average temperature is  [tex]T_{avg} = \frac{70+30 }{2} = 50^o[/tex]

The Amplitude is  [tex]A = \frac{T_{max} - T_ [min}{2} = \frac{70-30}{2} =20^0[/tex]

The period = 24 This because the function  is modeled in such a way that 24 hour is time to complete a full cycle

The General sin equation is mathematically given as

        [tex]T(t) = A sin (b (t - c )) +d[/tex]

Where A is the Amplitude = 20

            b is the angular speed

            c is the phase shift  

             d  is the vertical transition

And T(t) is the temperature after time t

           And the period is evaluates as [tex]T = \frac{2 \pi}{b}[/tex] since [tex]T = \frac{1}{frequency}[/tex]  

This implies that [tex]b= \frac{2 \pi}{T} = \frac{2 \pi}{24 }=\frac{\pi}{12}[/tex]

 Since average is at 50 then it means that the wave graph has been shifted by 50 unites

          d = 50        

Now from our question

  t = 3 hours when T(t) = 30

This means that

       [tex]T(3) =20 sin (\frac{\pi}{12}(3 -C) )+50[/tex]

=>   [tex]30 = 20 sin (\frac{\pi}{12} (3-c)) +50[/tex]

=>    [tex]20 sin (\frac{\pi}{12} (3-c)) = 30 -50= -20[/tex]

=>   [tex]sin (\frac{\pi}{12} (3 -c )) = -1[/tex]

Since  [tex]-1 = sin \frac{3 \pi}{2}[/tex] we have  

     [tex]sin (\frac{\pi}{12} (3 -c )) = sin(\frac{3 \pi}{2} )[/tex]

=>  [tex]3-c = \frac{sin(\frac{\pi}{12} )}{sin (\frac{3 \pi}{2} )}[/tex]

=>  [tex]-c = 18 -3[/tex]

=>   [tex]c = - 15[/tex]

Therefore the sinusoidal model of the temperature is

   [tex]T(t) = 20 sin (\frac{\pi}{12} (t - (-15)) ) +50[/tex]

           [tex]T(t)= 20 sin (\frac{\pi}{2}(t+15) ) +50[/tex]

Answer:

a) [tex]g(x) = sin (123.75\pi t)[/tex]

b) [tex]T(t) = 20 sin (\frac{\pi }{12} (t+15))+50[/tex]

Step-by-step explanation:

Frequency, f = 61.875 Hz

[tex]g(x) = A sin (wt + \alpha)[/tex]...........(1)

Amplitude, A = 1

Since there is no phase shift, [tex]\alpha = 0[/tex]

[tex]w = 2 \pi f[/tex]

[tex]w = 2\pi * 61.875[/tex]

[tex]w = 123.75 rad/s[/tex]

Substituting the values of A and w into equation (1)

[tex]g(x) = sin (123.75\pi t)[/tex]

b)

The general equation for a sinusoid

[tex]T(t) = A sin (B(t-C))+D[/tex].................(2)

Lot temperature = 30⁰

High temperature = 70⁰

Amplitude, [tex]A = \frac{70-30}{2} \\[/tex]

A = 20⁰

Vertical shift, [tex]D = \frac{70 + 30}{2}[/tex]

D = 50⁰

Since the low temperature of 30⁰ occurs at 3 AM

t = 3, T(t) = 30

Period, [tex]T = \frac{2\pi }{B}[/tex],   [tex]T = 24 hrs[/tex]

[tex]B = \frac{2\pi }{T}[/tex]

[tex]B = \frac{\pi }{12}[/tex]

[tex]30 = 20 sin (\frac{\pi }{12} (3-C))+50[/tex]

[tex]-20 = 20 sin (\frac{\pi }{12} (3-C))[/tex]

[tex]-1 = sin (\frac{\pi }{12} (3-C))[/tex]

[tex]sin^{-1} (-1)= (\frac{\pi }{12} (3-C))[/tex]

[tex]3\pi/2 = (\frac{\pi }{12} (3-C))\\18 = 3 - C\\C = -15[/tex]

Substituting the values of A, B, C, D into equation (2)

[tex]T(t) = 20 sin (\frac{\pi }{12} (t+15))+50[/tex]