Answer:
3.58 m/s
Explanation:
Data:
The plot can be drawn to present the information in the question.
Then the calculations:
mass = 4.50 kg
translational speed = 2 m/s
radius = 4.50 cm
angle = 29.0 °
Energy at the top of the incline, [tex]E_{i}[/tex] is calculated as follows:
[tex]E_{i} = mgh\\ = mg(2.00) sin 32 + \frac{1}{2}mv_{i} ^{2} \\ = (4.50 kg) (9.81 m/s^{2}) (2.00m)sin32 + \frac{1}{2}(4.50 kg) (2.50 m/s)\\ = 52. 36 J[/tex]
The next item is the moment of inertia of the solid:
[tex]I = \frac{2}{5}r^{2}[/tex]
= [tex]\frac{2}{5}(4.50)(0.045)^{2} \\= 0.003645[/tex]
Then the final velocity, [tex]v_{f}[/tex] is given by:
[tex]v_{f} = \frac{5}{7}*4+ (\frac{10}{7})* (9.81 * 0.714)^{2} \\ = 3.58 m/s[/tex]