Respuesta :

Answers: (A) Sin = 5/13 and (B) tan = 5/12

Answer:

The answer are the options B and C

[tex]sin(x)=\frac{5}{13}[/tex]

[tex]tan(x)=\frac{5}{12}[/tex]

Step-by-step explanation:

we know that

[tex]csc(x)=\frac{1}{sin(x)}[/tex]

In this problem we have

[tex]csc(x)=\frac{13}{5}[/tex]

substitute

[tex]\frac{13}{5}=\frac{1}{sin(x)}[/tex]

solve for sin(x)

[tex]sin(x)=\frac{5}{13}[/tex]

[tex]cos^{2}(x)+sin^{2}(x)=1[/tex]

substitute the value of sin(x) and solve for cos(x)

[tex]cos^{2}(x)+(\frac{5}{13})^{2}=1[/tex]

[tex]cos^{2}(x)=1-(\frac{5}{13})^{2}[/tex]

[tex]cos^{2}(x)=(\frac{13^{2}-5^{2}}{13^{2}})[/tex]

[tex]cos^{2}(x)=(\frac{144}{13^{2}})[/tex]

[tex]cos^{2}(x)=(\frac{12^{2}}{13^{2}})[/tex]

[tex]cos(x)=(\frac{12}{13})[/tex]

The function tangent is equal to

[tex]tan(x)=\frac{sin(x)}{cos(x)}[/tex]

substitute the values

[tex]tan(x)=\frac{(5/13)}{(12/13)}=5/12[/tex]