Given the following functions f(x) and g(x), solve f[g(6)] and select the correct answer below:

f(x) = 6x + 12

g(x) = x − 8

−96
0
24
48

Respuesta :

TSO
f[g(6)] = f[6 - 8] = f[-2] = 6(-2) + 12 = -12 + 12 = 0

f[g(6)] = 0

The answer is B) 0.

Answer:

Option 2nd is correct.

[tex]f[g(6)][/tex] =0.

Step-by-step explanation:

Given the function:

[tex]f(x) = 6x+12[/tex]

[tex]g(x) = x-8[/tex]

Solve: [tex]f[g(6)][/tex]

First calculate:

f[g(x)]

Substitute the function g(x)

[tex]f[x-8][/tex]

Replace x with x-8 in the function f(x) we get;

[tex]f(x-8) = 6(x-8)+12[/tex]

The distributive property says that:

[tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

Using distributive property:

[tex]f(x-8) = 6x-48+12 = 6x-36[/tex]

⇒[tex]f[g(x)] = 6x-36[/tex]

Put x = 6 we get;

[tex]f[g(6)] = 6(6)-36 = 36-36 =0[/tex]

Therefore, the value of  [tex]f[g(6)][/tex] is 0.