Respuesta :

[tex]x=0.1\overline{16}\\ 10x=1.\overline{16}\\ 1000x=116.\overline{16}\\\\ 1000x-10x=116.\overline{16}-1.\overline{16}\\ 990x=115\\ x=\dfrac{115}{990}=\dfrac{23}{198}[/tex]

Answer:

0.11616... =  [tex]\frac{23}{198}[/tex].

Step-by-step explanation:

Given  :  0.116  , 16 is repeating .

To find : simplified fraction.

Solution : We have given 0.11616.....

Let x =  0.11616.....

On multiplying the both sides by 100 because there are two numbers which are repeating.

100x = 100 *  0.11616.....

100 x = 11.616....

We can write  11.616.... in terms of x

100 x = 11. 5 + 0.11616....

100x = 11.5+ x .

On subtracting both sides by x

99 x = 11.5

On dividing both sides by 99

x = [tex]\frac{11.5}{99}[/tex].

x=  [tex]\frac{115}{990}[/tex].

On dividing both number by 5

x =  [tex]\frac{23}{198}[/tex].

Therefore, 0.11616... =  [tex]\frac{23}{198}[/tex].