A rectangle has a length of the fifth root of 16 inches and a width of 2 to the 1 over 5 power inches. Find the area of the rectangle. A. 2 to the 3 over 5 power inches squared B. 2 to the 4 over 5 power inches squared C. 2 inches squared D. 2 to the 2 over 5 power inches squared

Respuesta :

The area (A) of the rectangle is the product of its width (W) and length (L). Mathematically,
                       A  = L x W 
Substituting the given values,
                      A = (16^1/5) x (2^1/5)
Since they have the same exponents, the simplified expression for the area is,
                         A = 32^1/5
The value of area is 2. Thus, the answer is letter C. 

Answer:

C. [tex]2\text{ Inches}^2[/tex]

Step-by-step explanation:

We have been given that length of rectangle is [tex]\sqrt[5]{16}[/tex] inches and width is [tex]2^{\frac{1}{5}}[/tex] inches. We are asked to find the area of the given rectangle.

[tex]\text{Area of rectangle}=\text{Length}\times \text{Width}[/tex]

Substitute given values:

[tex]\text{Area of rectangle}=\sqrt[5]{16}\text{ Inches}\times 2^{\frac{1}{5}}\text{ Inches}[/tex]

Writing 16 as [tex]2^4[/tex].

[tex]\text{Area of rectangle}=\sqrt[5]{2^4}\text{ Inches}\times 2^{\frac{1}{5}}\text{ Inches}[/tex]

Using property [tex]\sqrt[n]{a^m}=a^\frac{m}{n}}[/tex], we will get:

[tex]\text{Area of rectangle}=2^{\frac{4}{5}}\text{ Inches}\times 2^{\frac{1}{5}}\text{ Inches}[/tex]

[tex]\text{Area of rectangle}=2^{\frac{4}{5}}\times 2^{\frac{1}{5}}\text{ Inches}^2[/tex]

Using property [tex]a^m\times a^n=a^{m+n}[/tex], we will get:

[tex]\text{Area of rectangle}=2^{\frac{4}{5}+\frac{1}{5}}\text{ Inches}^2[/tex]

[tex]\text{Area of rectangle}=2^{\frac{4+1}{5}}\text{ Inches}^2[/tex]

[tex]\text{Area of rectangle}=2^{\frac{5}{5}}\text{ Inches}^2[/tex]

[tex]\text{Area of rectangle}=2^{1}\text{ Inches}^2[/tex]

[tex]\text{Area of rectangle}=2\text{ Inches}^2[/tex]

Therefore, the area of the given rectangle is 2 square inches and option C is the correct choices.