Respuesta :
[tex]P(12,9)=\dfrac{12!}{3!}=4\cdot5\cdot\ldots\cdot11\cdot12=79,833,600[/tex]
Answer:
The value of P(12,9) is 79833600.
Step-by-step explanation:
We need to find the value of P(12,9).
The given expression represents the permutation.
The formula for permutation is
[tex]P(n,r)=\frac{n!}{(n-r)!}[/tex]
In the given expression n=12 and r=9. So, the value of P(12,9) is
[tex]P(n,r)=\frac{12!}{(12-9)!}[/tex]
[tex]P(n,r)=\frac{12!}{3!}[/tex]
[tex]P(n,r)=\frac{12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3!}{3!}[/tex]
Now, cancel out the common factors.
[tex]P(n,r)=12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4[/tex]
[tex]P(n,r)=79833600[/tex]
Therefore the value of P(12,9) is 79833600.