Respuesta :
Answer:
Step-by-step explanation:
1) Replace f(x) with y: y = 19/x^3
2) Interchange x and y: x = 19/y^3
3) Solve this result for y: xy^3 = 19, or y^3 = 19/x, or
y = ∛[19/x]
-1
4. Replace this y with the label f (x) = ∛[19/x]
Answer:
The inverse function of [tex]f(x) =\frac{19}{x^3}[/tex]
[tex]f(x)^{-1}=\sqrt[3]{\frac{19}{x}}[/tex]
Step-by-step explanation:
[tex]f(x) = \frac{19}{x^3}[/tex]
Steps to inverse the functions:
Step 1: x ⇔ y
[tex]x=\frac{19}{y^3}[/tex]
Step 2 : now solve the equation for y:
[tex]y^3=\frac{19}{x}[/tex]
[tex]y=\sqrt[3]{\frac{19}{x}}[/tex]
The above equation is the inverse of the given function f(x).
[tex]f(x)^{-1}=\sqrt[3]{\frac{19}{x}}[/tex]