Respuesta :
f(x) = (x - 2)(x - 3)(x - 5) = x[x(x - 5) - 3(x - 5)] - 2[x(x - 5) - 3(x - 5)] = x[x^2 - 5x - 3x + 15] - 2[x^2 - 5x - 3x + 15] = x[x^2 - 8x + 15] - 2[x^2 - 8x + 15] = x^3 - 8x^2 + 15x - 2x^2 + 16x - 30 = x^3 - 10x^2 + 31x - 30
Answer:
Option 2 is correct.
Step-by-step explanation:
Whenever we are given zeroes of a polynomial we multiply the factors so, as to create a cubic polynomial
[tex]f(x)=(x-2)(x-3)(x-5)[/tex]
when we will multiply the above factors we get
[tex]f(x)=(x-2)(x^2-5x-3x+15)[/tex]
After further multiplication we get
[tex](x-2)(x^2-8x+15)[/tex]
After simplification we get
[tex]x^3-8x^2+15x-2x^2+16x-30[/tex]
After further simplification we get
[tex]x^3-10x^2+31x-30[/tex]
Option 2 is correct