Respuesta :
Function 1:
f(x) = -x² + 8(x-15)f(x) = -x² + 8x - 120
Function 2:
f(x) = -x² + 4x+1
Taking derivative will find the highest point of the parabola, since the slope of the parabola at its maximum is 0, and the derivative will allow us to find that.
Function 1 derivative: -2x + 8 ⇒ -2x + 8 = 0 ⇒ - 2x = -8 ⇒ x = -8/-2 = 4
Function 2 derivative: -2x+4 ⇒ -2x + 4 = 0 ⇒ -2x = -4 ⇒ x = -4/-2 ⇒ x= 2
Function 1: f(x) = -x² + 8x - 120 ; x = 4
f(4) = -4² + 8(4) - 120 = 16 + 32 - 120 = -72
Function 2: f(x) = -x² + 4x+1 ; x = 2
f(2) = -2² + 4(2) + 1 = 4 + 8 + 1 = 13
Function 2 has the larger maximum.
f(x) = -x² + 8(x-15)f(x) = -x² + 8x - 120
Function 2:
f(x) = -x² + 4x+1
Taking derivative will find the highest point of the parabola, since the slope of the parabola at its maximum is 0, and the derivative will allow us to find that.
Function 1 derivative: -2x + 8 ⇒ -2x + 8 = 0 ⇒ - 2x = -8 ⇒ x = -8/-2 = 4
Function 2 derivative: -2x+4 ⇒ -2x + 4 = 0 ⇒ -2x = -4 ⇒ x = -4/-2 ⇒ x= 2
Function 1: f(x) = -x² + 8x - 120 ; x = 4
f(4) = -4² + 8(4) - 120 = 16 + 32 - 120 = -72
Function 2: f(x) = -x² + 4x+1 ; x = 2
f(2) = -2² + 4(2) + 1 = 4 + 8 + 1 = 13
Function 2 has the larger maximum.
Answer:
I can confirm that the answer above is correct because I took the test and got it right.
Step-by-step explanation:
The answer is:
Function 2 has the larger maximum.