Respuesta :
Answer: Option A -439
(s o t)(x)=s(t(x))
(s o t)(-7)=s(t(-7))
x=-7→t(-7)=3(-7)→t(-7)=-21
(s o t)(-7)=s(t(-7))=s(-21)
x=-21→s(-21)=2-(-21)^2=2-441→s(-21)=-439
(s o t)(-7)=s(t(-7))=s(-21)=-439
Answer: Option A -439
(s o t)(x)=s(t(x))
(s o t)(-7)=s(t(-7))
x=-7→t(-7)=3(-7)→t(-7)=-21
(s o t)(-7)=s(t(-7))=s(-21)
x=-21→s(-21)=2-(-21)^2=2-441→s(-21)=-439
(s o t)(-7)=s(t(-7))=s(-21)=-439
Answer: Option A -439
Answer:
Option (a) is correct.
[tex]s(t(x))=-439[/tex]
Step-by-step explanation:
Given :[tex]s(x) = 2- x^2[/tex] and [tex]t(x) = 3x[/tex]
We have to find the value of (s t)(-7) and choose the correct option from the given options.
Consider the given function [tex]s(x) = 2- x^2[/tex] and [tex]t(x) = 3x[/tex]
and we have to find the value of (s t)(x) at x = -7
We first find the value of (st)(x) that is s(t(x))
Thus, [tex]s(t(x))=2-(3x)^2[/tex]
Simplify,
[tex]s(t(x))=2-9x^2[/tex]
We get, For x = -7 , we have,
[tex]s(t(-7))=2-9(-7)^2[/tex]
Simplify, we have,
[tex]s(t(-7))=2-441=-439[/tex]
Thus, [tex]s(t(x))=-439[/tex]