A chemist fills a reaction vessel with 9.20 atm nitrogen monoxide (NO) gas, 9.15 atm chlorine (CI) gas, and 7.70 atm nitrosyl chloride (NOCI) gas at a temperature of 25.0°C. Under these conditions, calculate the reaction free energy AG for the following chemical reaction: 2NO(g) +CI (8) - 2NOCI (8) Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule

Respuesta :

Answer:

The reactions free energy [tex]\Delta G = -49.36 kJ[/tex]

Explanation:

From the question we are told that

      The pressure of (NO) is [tex]P_{NO} = 9.20 \ atm[/tex]

      The  pressure of  (Cl) gas is  [tex]P_{Cl} = 9.15 \ atm[/tex]

       The  pressure of nitrosly chloride (NOCl) is [tex]P_{(NOCl)} = 7.70 \ atm[/tex]

The reaction is

              [tex]2NO_{(g)} + Cl_2 (g)[/tex]    ⇆   [tex]2 NOCl_{(g)}[/tex]

 From the reaction we can  mathematically evaluate the [tex]\Delta G^o[/tex] (Standard state  free energy ) as

                    [tex]\Delta G^o = 2 \Delta G^o _{NOCl} - \Delta G^o _{Cl_2} - 2 \Delta G^o _{NO}[/tex]

The Standard state  free energy for NO is  constant with a value  

                 [tex]\Delta G^o _{NO} = 86.55 kJ/mol[/tex]

 The Standard state  free energy for [tex]Cl_2[/tex] is  constant with a value                  

             [tex]\Delta G^o _{Cl_2} = 0kJ/mol[/tex]

 The Standard state  free energy for [tex]NOCl[/tex] is  constant with a value

         [tex]\Delta G^o _{NOCl} =66.1kJ/mol[/tex]

Now substituting this into the equation

        [tex]\Delta G^o = 2 * 66.1 - 0 - 2 * 87.6[/tex]

                [tex]= -43 kJ/mol[/tex]

The pressure constant is evaluated as

         [tex]Q = \frac{Pressure \ of \ product }{ Pressure \ of \ reactant }[/tex]

Substituting  values  

        [tex]Q = \frac{(7.7)^2 }{(9.2)^2 (9.15) } = \frac{59.29}{774.456}[/tex]

           [tex]= 0.0765[/tex]

The free energy for this reaction is evaluated as

           [tex]\Delta G = \Delta G^o + RT ln Q[/tex]

Where R is gas constant with a value  of  [tex]R = 8.314 J / K \cdot mol[/tex]

          T is temperature in K  with a given value of  [tex]T = 25+273 = 298 K[/tex]

   Substituting value

                [tex]\Delta G = -43 *10^{3} + 8.314 *298 * ln [0.0765][/tex]

                       [tex]= -43-6.36[/tex]

                      [tex]\Delta G = -49.36 kJ[/tex]