The population p of a small community on the outskirts of a city grows rapidly over a 20-year period: t05101520p1002004509502000 As an engineer working for a utility company, you must forecast the population 5 years into the future in order to anticipate the demand for power. Employ an exponential model and linear regression to make this prediction. (Round the final answer to the nearest whole number.)

Respuesta :

Answer:

The population of the small community, 5 years into the future, after the initial 20-year period = 4268.

Step-by-step explanation:

t | 0 | 5 | 10 | 15 | 20

p | 100 | 200 | 450 | 950 | 2000

The exponential function will look like

p = aeᵏᵗ

where a and k are constants.

Take the natural logarithms of both sides

In p = In aeᵏᵗ

In p = In a + In eᵏᵗ

In p = In a + kt

In p = kt + In a.

We then use linear regression to fit the data of In p against t to obtain k and In a.

t | 0 | 5 | 10 | 15 | 20

p | 100 | 200 | 450 | 950 | 2000

In p | 4.605 | 5.298 | 6.109 | 6.856 | 7.601

In p = kt + In a.

y = mx + b

m = k and b = In a

Performing a linear regression analysis on the now-linear relationship between In p and t and also plotting a graph of the variables.

The regression equation obtained is

y = 0.151x + 4.584

The first attached image shows the equations necessary for the estimation of the linear regression parameters.

The second attached image shows the use of regression calculator and the plot of the function In p versus t.

Comparing

y = 0.151x + 4.584

With

In p = kt + In a.

y = In p

k = 0.151

x = t

In a = 4.584

a = 97.905

The exponential function relating p and t,

p = aeᵏᵗ now becomes

p = 97.905 e⁰•¹⁵¹ᵗ

So, to predict the population 5 years into the future, that is 5 years after the 20 year period.

we need p at t=25 years.

0.151 × 25 = 3.775

p(t=25) = 97.905 e³•⁷⁷⁵ = 4268.41 = 4268.

Hope this Helps!!!

Ver imagen AyBaba7
Ver imagen AyBaba7