Answer:
x^6 - (8/5)x^5 - 3x^3 + C.
Step-by-step explanation:
f(x) = 6x^5 - 8x^4 - 9x^2.
Using the general form antiderivative of Ax^m = Ax(m+1) / (m+1)+ C:
Antiderivative = 6 * x^(5+1) / 6 - 8 * x^(4+1) / 5 - 9 * x^(2+1) / 3 + C
= 6x^6/6 - 8x^5/5 - 9x^3/3 + C
= x^6 - (8/5)x^5 - 3x^3 + C.
Differentiating:
f'(x) = 6x^(6-1) - 8 x^(5-4) - 9x^(3-1) + 0
f'(x) = 6x^5 - 8x^4 - 9x^2.