To solve the problem, it will be necessary to apply the concepts related to Young's Modulus, which defines the relationship between stress and strain in a body. This mathematical relationship is explained below
[tex]\text{Young Modulus} = \frac{\text{Stress}}{\text{Strain}}[/tex]
[tex]\upsilon = \frac{\sigma}{\epsilon}[/tex]
But here,
[tex]\sigma = \frac{F}{A} = \frac{F}{\pi r^2}[/tex]
Where,
A = Area
F = Force
r = Radius
In the formula of Young modulus we have then,
[tex]\upsilon= \dfrac{\frac{F}{A}}{\epsilon}[/tex]
Replacing,
[tex]7.0*10^{10} = \dfrac{\frac{3.2*10^4}{\pi (2.5*10^{-2})^2}}{\epsilon}[/tex]
[tex]\epsilon = \dfrac{\frac{3.2*10^4}{\pi (2.5*10^{-2})^2}}{7.0*10^{10}}[/tex]
[tex]\epsilon = 2.3*10^{-4}[/tex]
Therefore the strain is [tex]2.3*10^{-4}[/tex]