The ​half-life of a radioactive element is 130​ days, but your sample will not be useful to you after​ 80% of the radioactive nuclei originally present have disintegrated. About how many days can you use the​ sample? Round to the nearest day.

Respuesta :

Answer:

We can use the sample about 42 days.

Step-by-step explanation:

Decay Equation:

[tex]\frac{dN}{dt}\propto -N[/tex]

[tex]\Rightarrow \frac{dN}{dt} =-\lambda N[/tex]

[tex]\Rightarrow \frac{dN}{N} =-\lambda dt[/tex]

Integrating both sides

[tex]\int \frac{dN}{N} =\int\lambda dt[/tex]

[tex]\Rightarrow ln|N|=-\lambda t+c[/tex]

When t=0, N=[tex]N_0[/tex] = initial amount

[tex]\Rightarrow ln|N_0|=-\lambda .0+c[/tex]

[tex]\Rightarrow c= ln|N_0|[/tex]

[tex]\therefore ln|N|=-\lambda t+ln|N_0|[/tex]

[tex]\Rightarrow ln|N|-ln|N_0|=-\lambda t[/tex]

[tex]\Rightarrow ln|\frac{N}{N_0}|=-\lambda t[/tex].......(1)

                            [tex]\frac{N}{N_0}=e^{-\lambda t}[/tex].........(2)

Logarithm:

  • [tex]ln|\frac mn|= ln|m|-ln|n|[/tex]
  • [tex]ln|ab|=ln|a|+ln|b|[/tex]
  • [tex]ln|e^a|=a[/tex]
  • [tex]ln|a|=b \Rightarrow a=e^b[/tex]
  • [tex]ln|1|=0[/tex]

130 days is the half-life of the given radioactive element.

For half life,

[tex]N=\frac12 N_0[/tex],  [tex]t=t_\frac12=130[/tex] days.

we plug all values in equation (1)

[tex]ln|\frac{\frac12N_0}{N_0}|=-\lambda \times 130[/tex]

[tex]\rightarrow ln|\frac{\frac12}{1}|=-\lambda \times 130[/tex]

[tex]\rightarrow ln|1|-ln|2|-ln|1|=-\lambda \times 130[/tex]

[tex]\rightarrow -ln|2|=-\lambda \times 130[/tex]

[tex]\rightarrow \lambda= \frac{-ln|2|}{-130}[/tex]

[tex]\rightarrow \lambda= \frac{ln|2|}{130}[/tex]

We need to find the time when the sample remains 80% of its original.

[tex]N=\frac{80}{100}N_0[/tex]

[tex]\therefore ln|{\frac{\frac {80}{100}N_0}{N_0}|=-\frac{ln2}{130}t[/tex]

[tex]\Rightarrow ln|{{\frac {80}{100}|=-\frac{ln2}{130}t[/tex]

[tex]\Rightarrow ln|{{ {80}|-ln|{100}|=-\frac{ln2}{130}t[/tex]

[tex]\Rightarrow t=\frac{ln|80|-ln|100|}{-\frac{ln|2|}{130}}[/tex]

[tex]\Rightarrow t=\frac{(ln|80|-ln|100|)\times 130}{-{ln|2|}}[/tex]

[tex]\Rightarrow t\approx 42[/tex]

We can use the sample about 42 days.