A centrifuge in a forensics laboratory rotates at an angular speed of 3,700 rev/min. When switched off, it rotates 46.0 times before coming to rest. Find the constant angular acceleration of the centrifuge (in rad/s2). Consider the direction of the initial angular velocity to be the positive direction, and include the appropriate sign in your result.

Respuesta :

Answer:

Explanation:

Given,

initial angular speed, ω = 3,700 rev/min

                                      = [tex]3700\times \dfrac{2\pi}{60}=387.27\ rad/s[/tex]

final angular speed = 0 rad/s

Number of time it rotates= 46 times

angular displacement, θ = 2π x 46 = 92 π

Angular acceleration

[tex]\alpha = \dfrac{\omega_f^2 - \omega^2}{2\theta}[/tex]

[tex]\alpha = \dfrac{0 - 387.27^2}{2\times 92\ pi}[/tex]

[tex]\alpha = -259.28 rad/s^2[/tex]