Write an equation for an ellipse centered at the origin, which has foci at (\pm5,0)(±5,0)(, plus minus, 5, comma, 0, )and vertices at (\pm\sqrt{41},0)(± 41 ​ ,0)(, plus minus, square root of, 41, end square root, comma, 0, ).

Respuesta :

Answer:

The equation of ellipse is

[tex]\frac{x^2}{41}+\frac{y^2}{16}=1[/tex]

Step-by-step explanation:

The equation of an ellipse is

[tex]\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1[/tex]

where(h,k) is the center and c is distance from the center to the foci is given by [tex]a^2-b^2=c^2[/tex]. a is the distance from the center to the vertices and b is the distance from the center to the co-vertices.

The center of the ellipse is the mid-point of the vertices.

The mid point of the vertices [tex](\pm\sqrt{41},0)[/tex] is

=[tex](\frac{\sqrt{41}+(-\sqr{41})}2,\frac{0+0}2)[/tex]

=(0,0)

a is the distance between the center and the vertices.

So, [tex]a=\sqrt{(0-\sqrt{41})^2+(0-0)^2}[/tex]

        [tex]=\sqrt{41}[/tex]

c is the distance between the center and the foci.

So, [tex]c=\sqrt{(0-5)^2+(0-0)^2[/tex]

         =5

[tex]a^2-b^2=c^2[/tex]

[tex]\Rightarrow (\sqrt41)^2-b^2=5^2[/tex]

[tex]\Rightarrow b^2=(\sqrt41)^2- 5^2[/tex]

[tex]\Rightarrow b^2=41-25[/tex]

[tex]\Rightarrow b^2=16[/tex]

The equation of ellipse is

[tex]\frac{(x-0)^2}{(\sqrt{41})^2}+\frac{(y-0)^2}{16}=1[/tex]

[tex]\Rightarrow \frac{x^2}{41}+\frac{y^2}{16}=1[/tex]