Find the smallest perimeter and the dimensions for a rectangle with an area of 36 in squared. The smallest perimeter for a rectangle with an area of 36 in squared is nothing in. ​(Simplify your​ answer.) The dimensions of this rectangle are nothing in. ​(Simplify your answers. Use a comma to separate​ answers.)

Respuesta :

Answer:

The dimensions of the rectangle are: [tex]6\sqrt{2},3\sqrt{2}[/tex]

The smallest perimeter therefore will be:[tex]18\sqrt{2}[/tex]

Step-by-step explanation:

Let the dimension of the rectangle be x and y

Area of the Rectangle = xy

Area=36 Inch Squared

Therefore: xy=36

[tex]x=\frac{36}{y}[/tex]

Perimeter of the Rectangle, P(x,y)=2(x+y)

Substituting [tex]x=\frac{36}{y}[/tex] into P(x,y)

[tex]P(y)=2(\frac{36}{y}+y)=\frac{72+y^2}{y}[/tex]

The minimum value of the perimeter occurs at the point where the derivative =0.

[tex]P'(y)=\frac{y^2-72}{y^2}[/tex]

[tex]Setting\:P'(y)=0\\\frac{y^2-72}{y^2}=0\\y^2-72=0\\y^2=72\\y=\sqrt{72}=6 \sqrt{2}[/tex]

Recall:

[tex]x=\frac{36}{y}\\=\frac{36}{6\sqrt{2} }\\x=3\sqrt{2}[/tex]

The dimensions of the rectangle are: [tex]6\sqrt{2},3\sqrt{2}[/tex]

The smallest perimeter therefore will be:

[tex]=2(6\sqrt{2}+3\sqrt{2}) \\=2(9\sqrt{2})\\=18\sqrt{2}[/tex]