A motorboat heads upstream a distance of 24 miles on the Guadeloupe River, whose current is running at 3 mph. The trip up and back takes 6 hours. Assuming that the motorboat maintained a constant speed relative to the water, what was its speed?

Respuesta :

Answer:

9mph

Step-by-step explanation:

Let speed of boat=x mph

Speed of current=3 mph

Upstream speed=(x-3) mph

Downstream speed =(x+3)mph

Distance=24 miles

Total time=6 hours

[tex]Time=\frac{distance}{speed}[/tex]

According to question

[tex]\frac{24}{x+3}+\frac{24}{x-3}=6[/tex]

[tex](24)\frac{x-3+x+3}{(x+3)(x-3)}=6[/tex]

[tex]2x(24)=6(x+3)(x-3)[/tex]

[tex]\frac{48x}{6}=x^2-9[/tex]

Using the identity:[tex](a+b)(a-b)=a^2-b^2[/tex]

[tex]8x=x^2-9[/tex]

[tex]x^2-8x-9=0[/tex]

[tex]x^2-9x+x-9=0[/tex]

[tex]x(x-9)+1(x-9)=0[/tex]

[tex](x-9)(x+1)=0[/tex]

[tex]x-9=0\implies x=9[/tex]

[tex]x+1=0\implies x=-1[/tex]

Speed cannot be negative

Therefore, the speed of boat=9mph