Respuesta :
Answer:
(a)Total Cost, C=20LW+12LH+12WH
(b)[tex]C(W)=\dfrac{60W^3+800}{W}[/tex]
(c)W=1.88ft, L=5.64 ft and H=4.72 ft.
[tex]Minimum \:cost, C\approx \$638 $ (to the nearest dollar)$[/tex]
Explanation:
Given the dimensions of the box to be L,W and H.
(a)
- The material for the top and bottom of the box cost $10 per square foot
- The material used to build the four sides of the box cost $6 per square foot.
- Area of Top and Bottom=2LW
- Cost of Top and bottom=$10 X 2LW=20LW
- Area of four Sides =2(LH+WH)
- Cost of Four Sides =$6*2(LH+WH)=12(LH+WH)
- Total Cost, C=20LW+12LH+12WH
(b)The bottom side has length 3 times its width.
L=3W
Volume of the box=50 cubic feet.
[tex]Volume,V=LWH=3W^2H[/tex]
[tex]3W^2H=50\\H=\dfrac{50}{3W^2}[/tex]
Substituting L=3W and [tex]H=\dfrac{50}{3W^2}[/tex] into the cost function C.
C=20LW+12LH+12WH
[tex]C=20LW+12LH+12WH\\=20*3W*W+12*3W*\dfrac{50}{3W^2}+12W*\dfrac{50}{3W^2}\\=60W^2+\dfrac{600}{W}+\dfrac{200}{W}\\=\dfrac{60W^3+600+200}{W}\\C(W)=\dfrac{60W^3+800}{W}[/tex]
(c)The minimum cost occurs at the point where the derivative of the cost function equals zero.
[tex]If\:C(W)=\dfrac{60W^3+800}{W}\\C'(W)=\dfrac{120W^3-800}{W^2}=0\\120W^3-800=0\\120W^3=800\\W^3=\frac{800}{120}\\ W=1.88[/tex]
Recall:
[tex]L=3W=5.64 feet\\H=\dfrac{50}{3W^2}=\dfrac{50}{3(1.88)^2}=4.72 ft[/tex]
The dimensions of the box that minimize the cost are W=1.88ft, L=5.64 ft and H=4.72 ft.
Cost of the box at these dimension
[tex]C(W)=\dfrac{60W^3+800}{W}\\C(1.88)=\dfrac{60(1.88)^3+800}{1.88}\approx \$638 $ (to the nearest dollar)$[/tex]