Respuesta :
Complete Question: The complete question is in the file attached to this solution
Answer:
a) [tex]\left[\begin{array}{ccc}45&24\\67&89\end{array}\right] =\left[\begin{array}{ccc}X_{1} \\X_{2} \end{array}\right] + \left[\begin{array}{ccc}155.25 \\397.80 \end{array}\right][/tex]
b) The new hire sold a small drink for $1.78 and a medium drink for $3.13
Step-by-step explanation:
The matrix vector equation can be written as:
[tex]A \bar{X} = B[/tex]............(1)
let X₁ = Price of small drinks
Let X₂ = Price of medium drinks
The vector [tex]\bar{X}[/tex] of the prices of small and medium drinks is:
[tex]\bar{X} = \left[\begin{array}{ccc}X_{1} \\X_{2} \end{array}\right][/tex]
The matrix of the total sales can be written as:
[tex]A = \left[\begin{array}{ccc}45&24\\67&89\end{array}\right][/tex]
[tex]B = \left[\begin{array}{ccc}155.25 \\397.80 \end{array}\right][/tex]
According to the equation written in (1), the matrix vector equation is:
[tex]\left[\begin{array}{ccc}45&24\\67&89\end{array}\right] =\left[\begin{array}{ccc}X_{1} \\X_{2} \end{array}\right] + \left[\begin{array}{ccc}155.25 \\397.80 \end{array}\right][/tex]
[tex]45X_{1} + 24X_{2} = 155.25\\67X_{1} + 89X_{2} = 397.80[/tex]
Solving for X₁ and X₂ in the equations above:
X₁ = 1.78
X₂ = 3.13
