Calculate enthalpy changes for the following: 0.047 g of sulfur (rhombic) burns, forming ( for = – 296.84 kJ/mol) Enthalpy change = kJ 0.22 mol of decomposes to and ( for = –90.83 kJ/mol) Enthalpy change = kJ 2.44 g of is formed from and excess ( for = –45.90 kJ/mol) Enthalpy change = kJ mol of carbon is oxidized to ( for = –393.509 kJ/mol) Enthalpy change = kJ

Respuesta :

Complete Question

Calculate enthalpy changes for the following:

a

0.047 g of sulfur (rhombic)  burns, forming [tex]SO_2_{(g)}[/tex]  ( [tex]\Delta _f H^o[/tex] for  [tex]SO_2_{(g)}[/tex]  = – 296.84 kJ/mol)

Enthalpy change =______________ kJ

b

0.22 mol of decomposes to and [tex]Hg_{(l)}[/tex] and  [tex]O_2_{(g)}[/tex] ( [tex]\Delta_f H^o[/tex]for [tex]HgO[/tex] = –90.83

kJ/mol) Enthalpy change = ______________kJ

c

2.44 g of  [tex]NH_{3}_{(g)}[/tex]  is formed from and excess [tex]N_{2}_{(g)}[/tex] and excess [tex]H_{2}_{(g)}[/tex]( [tex]\Delta _f H^o[/tex]

for [tex]NH_{3}[/tex] = –45.90 kJ/mol)

Enthalpy change =___________________ kJ

d

[tex]1.47 *10^{-2}[/tex] mol of carbon is oxidized to  [tex]CO_{2}_{(g)}[/tex] ( [tex]\Delta_f H^o[/tex]  for [tex]CO_2[/tex] = –393.509 kJ/mol)

 Enthalpy change =__________________ kJ

Answer:

a

[tex]\Delta E_1= -0.435kJ[/tex]

b

[tex]\Delta E_2 = -19.98 kJ[/tex]

c

[tex]\Delta E_3= -6.6096kJ[/tex]

d

[tex]\Delta E_4 = -5.784 kJ[/tex]

Explanation:

For a

    The number o moles ([tex]n_1[/tex]) = [tex]\frac{mass}{Molar \ mass \ of \ sulfur } = \frac{0.047}{32} =0.0015 \ moles[/tex]

The Change in enthapy  is mathematically represented as

                    [tex]\Delta E_1 =n * \Delta _f H^o[/tex]

    Substituting values

                    [tex]\Delta E_1 = 0.0015 * -296.84[/tex]

                             [tex]\Delta E_1= -0.435kJ[/tex]

For b

   The Change in enthapy  is mathematically represented as

                    [tex]\Delta E_2 =n_2 * \Delta _f H^o[/tex]

      Substituting values

                   [tex]\Delta E_2 = 0.22 * -90.83[/tex]

                             [tex]\Delta E_2 = -19.98 kJ[/tex]

For  c

   The number o moles ([tex]n_3[/tex]) = [tex]\frac{mass}{Molar \ mass \ of \ NH_{3}_{(g)} } = \frac{2.44}{17} =0.144 \ moles[/tex]

The Change in enthapy  is mathematically represented as

                    [tex]\Delta E_3 =n_3 * \Delta _f H^o[/tex]

    Substituting values

                    [tex]\Delta E_3 = 0.144 * -45.90[/tex]

                             [tex]\Delta E_3= -6.6096kJ[/tex]

For d

         The Change in enthapy  is mathematically represented as

                    [tex]\Delta E_4 =n_4 * \Delta _f H^o[/tex]

      Substituting values

                   [tex]\Delta E_4 = 1.47*10^{-2} * -393.509[/tex]

                             [tex]\Delta E_4 = -5.784 kJ[/tex]