Answer:
2.068 rad/s.
Explanation:
Given,
mass of child, m = 53.7 Kg
radius of merry-go-round, r = 2.2 m
moment of inertia of merry-go-round,I = 205.327 kgm²
Initial angular speed, ω = 1.6 rad/s
distance moved by the child, r' = 0.836 m
Using conservation of angular momentum
[tex](I + I_1)\omega_1 = (I + I_2) \omega_2[/tex]
[tex](205.327+ 53.7\times 2.2)\times 1.6 = (205.327 + 53.7\times 0.836) \omega_2[/tex]
[tex]\omega_2 = 2.068\ rad/s[/tex]
The new angular speed of the merry-go-round when child moves inside is equal to 2.068 rad/s.