It is desired to estimate the mean GPA of each undergraduate class at a large university. How large a sample is necessary to estimate the GPA within at the confidence level? The population standard deviation is . If needed, round your final answer up to the next whole number.

Respuesta :

Answer:

[tex]n=(\frac{2.58(1.2)}{0.25})^2 =153.36 \approx 154[/tex]

So the answer for this case would be n=154 rounded up to the nearest integer

Step-by-step explanation:

Assuming the following question: It is desired to estimate the mean GPA of each undergraduate class at a large university. How large a sample is necessary to estimate the GPA within 0.25 at the 99% confidence level? The population standard deviation is 1.2. If needed, round your final answer up to the next whole number.

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

s represent the sample standard deviation

n represent the sample size  

Solution to the problem

The margin of error is given by this formula:

[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]    (a)

And on this case we have that ME =0.25 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex]   (b)

The critical value for 99% of confidence interval now can be founded using the normal distribution. And in excel we can use this formla to find it:"=-NORM.INV(0.005;0;1)", and we got [tex]z_{\alpha/2}=2.58[/tex], replacing into formula (b) we got:

[tex]n=(\frac{2.58(1.2)}{0.25})^2 =153.36 \approx 154[/tex]

So the answer for this case would be n=154 rounded up to the nearest integer