A student is studying simple harmonic motion of a spring. She conducts an experiment where she measures the amplitude and period of an undamped system to be 23 ± 2 mm and 0.40 ± 0.020 seconds, respectively. Using the equation for displacement as a function of time y(t) = Acos(ωt), what is the uncertainty of her displacement calculation in mm for t = 0.050 ± 0.0010 seconds?

Respuesta :

Answer:

5.9*10^{-4}m

Explanation:

to find the uncertainty of the displacement it is necessary to compute the uncertainty for the angular frequency:

[tex]\omega=\frac{2\pi}{T}=\frac{2\pi}{0.40s}=15.707rad/s\\\\\frac{d \omega}{\omega}=\frac{dT}{T}\\\\d\omega=\omega \frac{dT}{T}=(15.707rad/s)\frac{0.020s}{0.40s}=0.785rad/s[/tex]

then, you can calculate the uncertainty in angular displacement:

[tex]\theta=\omega t\\\\\frac{d\theta}{\theta}=\sqrt{(\frac{d\omega}{\omega})^2+(\frac{dt}{t})^2}\\\\d\theta=\theta\sqrt{(\frac{d\omega}{\omega})^2+(\frac{dt}{t})^2}=0.0422[/tex]

finally, by using:

[tex]y=Acos(\omega t)\\\\dy=dAcos(\omega t)d(\omega t)=(dA)cos(\theta)d\theta=(0.002m)cos(0.785)(0.0422)\\\\dy=5.9*10^{-4}m[/tex]

The uncertainty of her displacement in mm is  : 0.59 mm

Determine the uncertainty of her displacement

First step : determine the uncertaintiy of the angular frequency

w = [tex]\frac{2\pi }{T}[/tex]  = [tex]\frac{2\pi }{0.40} = 15.707 rad/s[/tex]

[tex]\frac{dw}{w} = \frac{dT}{T}[/tex]

therefore :

dw = 0.785 rad/s

Next step : determine the uncertainty of the angular displacement

θ = wt

dθ / θ = [tex]\sqrt{(\frac{dw}{w} )^2 + (\frac{dt}{t} )^2}[/tex]

therefore :

dθ = 0.0422

Final step : determine the uncertainty of displacement

y = Acos(wt)

dy = dAcos(wt)d(t) = (dA)cosθdθ

                              = ( 0.002m )cos (0.785)(0.0422)

                              = 5.9 * 10⁻⁴ m = 0.59 mm

Hence we can conclude that the  uncertainty of her displacement in mm is  : 0.59 mm

Learn more about displacement : https://brainly.com/question/321442

#SPJ5