Respuesta :
Answer:
0.0398cm/min
Step-by-step explanation:
We are given that
Radius of base circle=r=2 m=[tex]2\times 100=200 cm[/tex]
1 m=100 cm
[tex]\frac{dV}{dt}=5L/minute=5000cm^3/min[/tex]
1 L=1000 cubic cm
We know that
Volume of tank=[tex]\pi r^2 h[/tex]
Differentiate w.r.t t
[tex]\frac{dV}{dt}=\pi r^2\frac{dh}{dt}[/tex]
Substitute the values
[tex]5000=\pi(200)^2\frac{dh}{dt}[/tex]
[tex]\frac{dh}{dt}=\frac{5000}{\pi(200)^2}=0.0398cm/min[/tex]
The rate at which the water is falling is [tex]\frac{5000}{4 \pi} cm/hr [/tex]
The volume of a cylinder
The formula for calculating the volume of a cylinder is expressed as:
- [tex]V=\pi r^2h[/tex]
Take the differential
- [tex]\frac{dV}{dt} =\pi r^2 \frac{dr}{dt} [/tex]
Given the following parameters
- dV/dt = 5L/min
- r = 2 meters
Substitute the given parameters into the formula
[tex]5000 = \pi (2)^2 \frac{dr}{dt} \\ \frac{dr}{dt} =\frac{5000}{4 \pi} cm/hr[/tex]
Hence the rate at which the water is falling is [tex]\frac{5000}{4 \pi} cm/hr [/tex]
learn more on differentials here: https://brainly.com/question/18760518