Answer:
[tex]f = 0.806\,hz[/tex], [tex]T = 1.241\,s[/tex]
Explanation:
The problem can be modelled as a vertical mass-spring system exhibiting a simple harmonic motion. The spring constant is:
[tex]k = \frac{970\,N}{0.03\,m}[/tex]
[tex]k = 32333.333\,\frac{N}{m}[/tex]
The angular frequency is:
[tex]\omega = \sqrt{\frac{32333.333\,\frac{N}{m} }{1258.879\,kg} }[/tex]
[tex]\omega = 5.068\,\frac{rad}{s}[/tex]
The frequency and period of oscillations are, respectively:
[tex]f = \frac{5.068\,\frac{rad}{s} }{2\pi}[/tex]
[tex]f = 0.806\,hz[/tex]
[tex]T = \frac{1}{0.806\,hz}[/tex]
[tex]T = 1.241\,s[/tex]