Answer:
N = 1036 times
Explanation:
The radial probability density of the hydrogen ground state is given by:
[tex]p(r) = \frac{4r^{2} }{a_{0} ^{3} } e^{\frac{-2r}{a_{0} } }[/tex]
[tex]p(\frac{a_{0} }{2} ) = \frac{4(\frac{a_{0} }{2} )^{2} }{a_{0} ^{3} } e^{\frac{-2(\frac{a_{0} }{2} )}{a_{0} } }[/tex]
[tex]p(2a_{0} ) = \frac{4(2a_{0}) ^{2} }{a_{0} ^{3} } e^{\frac{-4a_{0} }{a_{0} } }[/tex]
[tex]N = 1300\frac{p(2a_{0}) }{p(\frac{a_{0} }{2} )}[/tex]
[tex]N = 1300\frac{(2a_{0}) ^{2}e^{\frac{-4a_{0} }{a_{0} } } }{(\frac{a_{0} }{2} )^{2} e^{\frac{-a_{0} }{a_{0} } }}[/tex]
[tex]N = 1300(16) e^{-3}[/tex]
N = 1035.57
N = 1036 times