The volume V of a fixed amount of a gas varies directly as the temperature T and inversely as the pressure P . Suppose that V= 42 cm^3 . when T = 84 kelvin and P = kg/cm^2 . Find the volume when T=185 kelvin and P = 10 kg/cm^2

Respuesta :

Complete question:

The volume V of a fixed amount of a gas varies directly as the temperature T and inversely as the pressure P . Suppose that V= 42 cm^3 . when T = 84 kelvin and P = 8 kg/cm^2 . Find the volume when T=185 kelvin and P = 10 kg/cm^2

Answer:

The final volume of the gas is 74 cm³

Explanation:

Given;

initial volume of the gas, V₁ = 42 cm³

initial temperature of the gas, T₁ =  84 kelvin

initial pressure of the gas, P₁ = 8 kg/cm²

final volume of the gas, V₂ = ?

final temperature of the gas, T₂ = 185 kelvin

final pressure of the gas, P₂ = 10 kg/cm²

From the statement given in the question, we formulate mathematical relationship between Volume, V, Temperature, T, and Pressure, P.

V ∝ T ∝ ¹/p

[tex]V =k \frac{T}{P}[/tex]

where;

k is constant of proportionality

make k subject of the formula

[tex]k = \frac{VP}{T} \\\\Thus, \frac{V_1P_1}{T_1} = \frac{V_2P_2}{T_2} \\\\V_2= \frac{V_1P_1T_2}{P_2T_1} \\\\V_2= \frac{42*8*185}{10*84} \\\\V_2 =74 \ cm^3[/tex]

Therefore, the final volume of the gas is 74 cm³

Answer:

V =  74 cm^3

Explanation:

Solution:-

- The volume V of a fixed amount of a gas varies directly as the temperature T and inversely as the pressure P. Expressing the Volume (V) in terms of Temperature (T) and (P):

                                      V ∝ T , V ∝ 1 / P

- Combine the two relations and equate the proportional relation with a proportionality constant:

                                      V = k * (T / P)

Where, k: The proportionality constant:

- Using the given conditions and plug in the given relation of volume V:

             Suppose that V= 42 cm^3 . when T = 84 kelvin , P = 8 kg/cm^2          

                                       k = V*P / T

                                       k = 42*8 / 84

                                       k = 4 kg cm / K

- Use the proportionality constant and evaluate Volume V for the following set of conditions:

                       T=185 kelvin and P = 10 kg/cm^2    

                                     V = 4*( 185 / 10 )

                                     V =  74 cm^3