5. The following sample observations on total coating layer thickness (in mm) of eight wire electrodes used for Wire electrical-discharge machining (WEDM): 21 16 29 35 42 24 24 25 Calculate a 99% CI for the variance σ 2 , and the standard deviation σ of the coating layer thickness distribution

Respuesta :

Answer:

99% CI for the variance [tex]\sigma^{2}[/tex] , and the standard deviation σ of the coating layer thickness distribution is [23.275 , 477.115] and [4.824 , 21.843] respectively.

Step-by-step explanation:

We are given that the following sample observations on total coating layer thickness (in mm) of eight wire electrodes used for Wire electrical-discharge machining (WEDM) : 21, 16, 29, 35, 42, 24, 24, 25

Firstly, the pivotal quantity for 99% confidence interval for the population variance is given by;

                          P.Q. = [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex]  ~ [tex]\chi^{2}__n_-_1[/tex]

where,  [tex]s^{2}[/tex] = sample variance = [tex]\frac{\sum (X-\bar X)^{2} }{n-1}[/tex]  = 67.43

             n = sample of observations = 8

            [tex]\sigma^{2}[/tex] = population variance

Here for constructing 99% confidence interval we have used chi-square test statistics.

So, 99% confidence interval for the population variance, [tex]\sigma^{2}[/tex] is ;

P(0.9893 < [tex]\chi^{2}_7[/tex] < 20.28) = 0.99  {As the critical value of chi-square at 7

                                          degree of freedom are 0.9893 & 20.28}  

P(0.9893 < [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex] < 20.28) = 0.99

P( [tex]\frac{0.9893 }{(n-1)s^{2} }[/tex] < [tex]\frac{1}{\sigma^{2} }[/tex] < [tex]\frac{20.28 }{(n-1)s^{2} }[/tex] ) = 0.99

P( [tex]\frac{(n-1)s^{2} }{20.28 }[/tex] < [tex]\sigma^{2}[/tex] < [tex]\frac{(n-1)s^{2} }{0.9893 }[/tex] ) = 0.99

99% confidence interval for [tex]\sigma^{2}[/tex] = [ [tex]\frac{(n-1)s^{2} }{20.28 }[/tex] , [tex]\frac{(n-1)s^{2} }{0.9893 }[/tex] ]

                                                   = [ [tex]\frac{7\times 67.43 }{20.28 }[/tex] , [tex]\frac{7\times 67.43 }{0.9893 }[/tex] ]

                                                   = [23.275 , 477.115]

99% confidence interval for [tex]\sigma[/tex]  = [ [tex]\sqrt{23.275}[/tex] , [tex]\sqrt{477.115}[/tex] ]

                                                  = [4.824 , 21.843]

Therefore, 99% CI for the variance [tex]\sigma^{2}[/tex] , and the standard deviation σ of the coating layer thickness distribution is [23.275 , 477.115] and [4.824 , 21.843] respectively.