g Using the complex based titration system: 50.00 mL 0.00250 M Ca2 titrated with 0.0050 M EDTA, buffered at pH 11.0 determine (i) first pCa first before initiating the titration process and then (ii) at equivalence when all the Ca2 is titrated to CaY2-. Please, use your text books and/or lecture notes to find potentially missing information about constants needed to solve the problem.

Respuesta :

yemmy

Answer:

Explanation:

a).

conc of Ca²⁺ =0.0025 M

pCa = -log(0.0025) = 2.6

logK,= 10.65 So lc = 4.47 x 10.

Formation constant of Ca(EDTA)]-z= 4.47 x 10¹⁰ At pH = 11, the fraction of EDTA that exists Y⁻⁴ is  [tex]\alpha_{Y^{-4}}[/tex] =0.81

So the Conditional Formation constant= [tex]K_f[/tex] =0.81x 4.47 x10¹⁰

=3.62x10¹⁰

b)

At Equivalence point:

Ca²⁺ forms 1:1 complex with EDTA At equivalence point,

Number of moles of Ca²⁺= Number of moles of EDTA Number of moles of Ca²⁺ = M×V = 0.00250 M × 50.00 mL = 0.125 mol

Number of moles of EDTA= 0.125 mol

Volume of EDTA required = moles/Molarity = 0.125 mol / 0.0050 M = 25.00 mL  

V e= 25.00 mL  

At equivalence point, all Ca²⁺ is converted to [CaY²⁻] complex. So the concentration of Ca²⁺ is determined by the dissociation of [CaY²⁻] complex.  

[tex][CaY^{2-}] = \frac{Initial,moles,of, Ca^{2+}}{Total,Volume} = \frac{0.125mol}{(50.00+25.00)mL} = 0.001667M[/tex]

                                                            [tex]{K^'}_f[/tex]

                       Ca²⁺      +      Y⁴          ⇄     CaY²⁻

Initial                 0                  0                      0.001667

change             +x                  +x                     -x

equilibrium        x                    x                    0.001667 - x

[tex]{K^'}_f = \frac{[CaY^{2-}]}{[Ca^{2+}][Y^4]}=\frac{0.001667-x}{x.x} =\frac{0.001667-x}{x^2}\\\\x^2 = \frac{0.001667-x}{{K^'}_f}\\ \\[/tex]

[tex]x^2=\frac{0.001667}{3.62\times10^{10}}=4.61\exp-14[/tex]

x = 2.15×10⁻⁷

[Ca+2] = 2.15x10⁻⁷ M  

pca = —log(2 15x101= 6.7