Respuesta :
Answer:
[tex]P(X\geq 5)=1-P(X<5)=1-P(X\leq 4)=1-[P(X=0)+P(X=1)+P(X=2) +P(X=3) +P(X=4)][/tex]
Using the pmf we can find the individual probabilities like this:
[tex]P(X=0)=\frac{e^{-6.4} 6.4^0}{0!}=0.001662[/tex]
[tex]P(X=1)=\frac{e^{-6.4} 6.4^1}{1!}=0.010634 [/tex]
[tex]P(X=2)=\frac{e^{-6.4} 6.4^2}{2!}=0.034029 [/tex]
[tex]P(X=3)=\frac{e^{-6.4} 6.4^3}{3!}=0.072595 [/tex]
[tex]P(X=4)=\frac{e^{-6.4} 6.4^4}{4!}=0.116151 [/tex]
And replacing we got:
[tex] P(X \geq 5) =0.76493[/tex]
Step-by-step explanation:
Previous concepts
Let X the random variable that represent the number of people that will become sereiosly ill in two years. We know that [tex]X \sim Poisson(\lambda)[/tex]
The probability mass function for the random variable is given by:
[tex]f(x)=\frac{e^{-\lambda} \lambda^x}{x!} , x=0,1,2,3,4,...[/tex]
And f(x)=0 for other case.
For this case the value for [tex]\lambda[/tex] would be:
[tex]\lambda = 3.2 \frac{ills}{year} *2 years = 6.4[/tex]
For this distribution the expected value is the same parameter [tex]\lambda[/tex]
[tex]E(X)=\mu =\lambda[/tex]
On this case we are interested on the probability of having at least two chocolate chips, and using the complement rule we have this:
[tex]P(X\geq 5)=1-P(X<5)=1-P(X\leq 4)=1-[P(X=0)+P(X=1)+P(X=2) +P(X=3) +P(X=4)][/tex]
Using the pmf we can find the individual probabilities like this:
[tex]P(X=0)=\frac{e^{-6.4} 6.4^0}{0!}=0.001662[/tex]
[tex]P(X=1)=\frac{e^{-6.4} 6.4^1}{1!}=0.010634 [/tex]
[tex]P(X=2)=\frac{e^{-6.4} 6.4^2}{2!}=0.034029 [/tex]
[tex]P(X=3)=\frac{e^{-6.4} 6.4^3}{3!}=0.072595 [/tex]
[tex]P(X=4)=\frac{e^{-6.4} 6.4^4}{4!}=0.116151 [/tex]
And replacing we got:
[tex] P(X \geq 5) =0.76493[/tex]
Answer:
The probability that at least 5 people will become seriously ill in two years is 0.7649.
Step-by-step explanation:
The question mentions that this problem can be modeled using the Poisson distribution so, we will use the formula:
P(X=x) = [(e^-λt)*(λt^x)]/x!
where λ = average number of occurrences per year
t = no. of years
x = number of people
We need to determine P(X≥5) so first we will calculate the probabilities at X=0,1,2,3,4 and subtract them from the total probability i.e. 1 to find P(X≥5).
We have λ = 3.2, t=2 years hence λt = (3.2)(2) = 6.4. So,
P(X=0) = [(e^(-6.4)*(6.4^0)]/0! = 0.00166
P(X=1) = [(e^(-6.4)*(6.4^1)]/1! = 0.01063
P(X=2) = [(e^(-6.4)*(6.4^2)]/2! = 0.03403
P(X=3) = [(e^(-6.4)*(6.4^3)]/3! = 0.07259
P(X=4) = [(e^(-6.4)*(6.4^4)]/4! = 0.011615
P(X≥5) = 1 - P(X<5)
= 1 - [P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4)]
= 1 - (0.00166 + 0.01063 + 0.03403 + 0.07259 + 0.011615)
= 1 - 0.23506
P(X≥5) = 0.7649
The probability that at least 5 people will become seriously ill in two years is 0.7649.