Respuesta :
Answer:
a) (9/2)
b) (9/4)
Step-by-step explanation:
I = ∫¹₀ (x³ - 5x) dx = -(9/4)
a) ∫¹₀ (10x - 2x³) dx = -2 ∫¹₀ (x³ - 5x) dx
∫¹₀ (x³ - 5x) dx = -(9/4) from the given value for I
-2 ∫¹₀ (x³ - 5x) dx = -2 × (-9/4) = (9/2)
b) ∫¹₀ (5x - x³) dx = -1 ∫¹₀ (x³ - 5x) dx
∫¹₀ (x³ - 5x) dx = -(9/4) from the given value for I
-1 ∫¹₀ (x³ - 5x) dx = -1 × (-9/4) = (9/4)
Hope this Helps!!!
Answer:
a.
[tex]\int\limits_{0}^{1} 10x - 2x^3 \,dx = -2(\int\limits_{0}^{1} x^3 -5x\,dx) = -2*(-9/4) = 9/2[/tex]
b.
[tex]\int\limits_{0}^{1} 5x - x^3 \,dx = -1*(\int\limits_{0}^{1} x^3 -5x\,dx) = -1*(-9/4) = 9/4[/tex]
Step-by-step explanation:
According to the information given.
[tex]\int\limits_{0}^{1} x^3 - 5x \,dx = -9/4\\[/tex]
Now.
a.
[tex]\int\limits_{0}^{1} 10x - 2x^3 \,dx = -2(\int\limits_{0}^{1} x^3 -5x\,dx) = -2*(-9/4) = 9/2[/tex]
b.
[tex]\int\limits_{0}^{1} 5x - x^3 \,dx = -1*(\int\limits_{0}^{1} x^3 -5x\,dx) = -1*(-9/4) = 9/4[/tex]