Respuesta :
Answer:
P = 995.6 atm
Explanation:
assuming ideal gas:
- PV = RTn
∴ Tst = 25°C ≅ 298 K
∴ V = 35.00 mL = 0.035 L
∴ molar mass CO2 = 44.01 g/mol
∴ mass CO2(g) = 62.76 g
⇒ mol CO2(g) = (62.76 g)*(mol/44.01 g) = 1.426 mol
∴ R = 0.082 atm.L/K.mol
⇒ P = RTn/V
⇒ P = ((0.082 atm.L/K.mol)*(298 K)*(1.426 mol)) / (0.035 L)
⇒ P = 995.6 atm
Answer:
The pressure of the carbon dioxide (CO2) gas is 0.913 atm
Explanation:
Step 1: Data given
Mass of carbon dioxide (CO2) = 62.76 grams
Molar mass of carbon dioxide (CO2) = 44.01 g/mol
Volume = 35000 mL = 35 L
Standard temperature = 273 K
Step 2: Calculate moles CO2
Moles CO2 = mass CO2 / molar mass
Moles CO2 = 62.76 grams / 44.01 g/mol
Moles CO2 = 1.426 moles
Step 3: Calculate the pressure
p*V = n*R*T
⇒with p = the pressure of the gas
⇒with V = the volume of the gas = 35 L
⇒with n = the moles of the gas = 1.426 moles
⇒with R = the gas constant = 0.08206 L*atm/mol *K
⇒with T = the temperature = 273 K
p = (n*R*T) / V
p = (1.426 * 0.08206 * 273) / 35
p = 0.913 atm
The pressure of the carbon dioxide (CO2) gas is 0.913 atm