Find the critical numbers of the function. (Enter your answers as a comma-separated list. Use n to denote any arbitrary integer values. If an answer does not exist, enter DNE.) g(θ) = 16θ − 4 tan(θ) θ =

Respuesta :

Answer:

[tex]\theta_{1} = \frac{\pi}{3} \pm 2\pi\cdot i[/tex], [tex]\forall i \in \mathbb{N}_{O}[/tex]

[tex]\theta_{2} = \frac{5\pi}{3} \pm 2\pi\cdot i[/tex], [tex]\forall i \in \mathbb{N}_{O}[/tex]

Step-by-step explanation:

The critical numbers are found by the First Derivative Test, which consists in differentiating the function, equalizing it to zero and solving it:

[tex]g'(\theta) = 16 - 4\cdot \sec^{2} \theta[/tex]

Following equation needs to be solved:

[tex]16 - 4\cdot \sec^{2}\theta = 0[/tex]

[tex]\sec^{2}\theta = 4[/tex]

[tex]\cos^{2}\theta = \frac{1}{4}[/tex]

[tex]\cos \theta = \frac{1}{2}[/tex]

The solution is:

[tex]\theta = \cos^{-1} \frac{1}{2}[/tex]

Given that cosine is a periodical function, there are two subsets of solution:

[tex]\theta_{1} = \frac{\pi}{3} \pm 2\pi\cdot i[/tex], [tex]\forall i \in \mathbb{N}_{O}[/tex]

[tex]\theta_{2} = \frac{5\pi}{3} \pm 2\pi\cdot i[/tex], [tex]\forall i \in \mathbb{N}_{O}[/tex]