Answer:
[tex]x \approx 21.080\,ft[/tex], [tex]y = 29.080\,ft[/tex]
Step-by-step explanation:
The total area of the pool and the walkway is:
[tex](x + 6\,ft)\cdot (y + 6\,ft) = 950\,ft^{2}[/tex]
[tex](x + 6\,ft)\cdot (x + 14\,ft) = 950\,ft^{2}[/tex]
[tex]x^{2} + 20\cdot x + 84\,ft^{2} = 950\,ft^{2}[/tex]
[tex]x^{2} + 20\cdot x - 866\,ft^{2} = 0[/tex]
The roots of the second-order polynomial is:
[tex]x_{1} \approx 21.080\,ft[/tex] and [tex]x_{2} \approx -41.081\,ft[/tex]
The only possible root is:
[tex]x \approx 21.080\,ft[/tex]
The other dimension of the pool is:
[tex]y = x + 8\,ft[/tex]
[tex]y = 21.080\,ft + 8\,ft[/tex]
[tex]y = 29.080\,ft[/tex]