A backyard pool has a concrete walkway around it that is 3 feet wide on all sides. The total area of the pool and the walkway is 950 ft2. If the length of the pool is 8 feet longer than the​ width, find the dimensions of the pool.

Respuesta :

Answer:

[tex]x \approx 21.080\,ft[/tex], [tex]y = 29.080\,ft[/tex]

Step-by-step explanation:

The total area of the pool and the walkway is:

[tex](x + 6\,ft)\cdot (y + 6\,ft) = 950\,ft^{2}[/tex]

[tex](x + 6\,ft)\cdot (x + 14\,ft) = 950\,ft^{2}[/tex]

[tex]x^{2} + 20\cdot x + 84\,ft^{2} = 950\,ft^{2}[/tex]

[tex]x^{2} + 20\cdot x - 866\,ft^{2} = 0[/tex]

The roots of the second-order polynomial is:

[tex]x_{1} \approx 21.080\,ft[/tex] and [tex]x_{2} \approx -41.081\,ft[/tex]

The only possible root is:

[tex]x \approx 21.080\,ft[/tex]

The other dimension of the pool is:

[tex]y = x + 8\,ft[/tex]

[tex]y = 21.080\,ft + 8\,ft[/tex]

[tex]y = 29.080\,ft[/tex]