Two vertical poles, one 16 ft high and the other 24 ft high, stand 30 feet apart on a flat field. A worker wants to support both poles by running rope from the ground to the top of each post. If the worker wants to stake both ropes in the ground at the same point, where should the stake be placed to use the least amount of rope?

Respuesta :

Answer:

The rope should be placed at 1.46 from the 16 ft pole to minimize the length.

Step-by-step explanation:

From the diagram, our goal is to minimize the length of Rope AC passing through B.

First, we determine the length of the rope AC.

AC=AB+BC

In the first triangle,

[tex]|AB|^2=16^2+x^2\\|AB|=\sqrt{16^2+x^2}[/tex]

Similarly, in the second triangle,

[tex]|BC|^2=24^2+(30-x)^2\\|BC|=\sqrt{x^2-60x+1476}[/tex]

Length of the Rope, AC

[tex]L=\sqrt{16^2+x^2}+\sqrt{x^2-60x+1476}[/tex]

First, to minimize L,we find its derivative.

[tex]L'=\dfrac{x\sqrt{x^2-60x+1476}+(x-30)\sqrt{16^2+x^2}}{(\sqrt{16^2+x^2})(\sqrt{x^2-60x+1476})}[/tex]

Setting the derivative to zero

[tex]x\sqrt{x^2-60x+1476}+(x-30)\sqrt{16^2+x^2}=0\\-x\sqrt{x^2-60x+1476}=(x-30)\sqrt{16^2+x^2}\\$Square both sides\\x^2(x^2-60x+1476)=(x-30)^2(16^2+x^2)\\x^4-60x^3+1476x^2=x^4-60x^3+1156x^2-15360x+230400\\1476x^2=1156x^2-15360x+230400\\1476x^2-1156x^2+15360x-23040=0\\320x^2+15360x-23040=0\\x=1.46,-49.46[/tex]

The rope should be placed at 1.46 from the 16 ft pole to minimize the length.

Ver imagen Newton9022

The least amount of the rope is the smallest length that can be gotten from the pole

The rope should be placed at 12 feet from the 16 ft pole to use the least amount of rope.

The heights are given as:

[tex]\mathbf{h_1 = 16}[/tex]

[tex]\mathbf{h_2 = 24}[/tex]

The distance is given as:

[tex]\mathbf{d = 30}[/tex]

See attachment for the illustrating diagram

Considering the two right-angled triangles on the diagram, we have the following equations, using Pythagoras theorem

[tex]\mathbf{L_1 = \sqrt{x^2 + 16^2}}[/tex]

[tex]\mathbf{L_2 = \sqrt{(30 - x)^2 + 24^2}}[/tex]

Expand

[tex]\mathbf{L_1 = \sqrt{x^2 + 256}}[/tex]

[tex]\mathbf{L_2 = \sqrt{900 - 60x +x^2 + 576}}[/tex]

[tex]\mathbf{L_2 = \sqrt{1476- 60x +x^2 }}[/tex]

The length (L) of the pole is:

[tex]\mathbf{L = L_1 + L_2}[/tex]

So, we have:

[tex]\mathbf{L = \sqrt{x^2 + 256} + \sqrt{1476 - 60x + x^2}}[/tex]

Differentiate

[tex]\mathbf{L' = \frac{x}{\sqrt{x^2 + 256}} + \frac{x - 30}{\sqrt{1476 - 60x + x^2}}}[/tex]

Set to 0

[tex]\mathbf{\frac{x}{\sqrt{x^2 + 256}} + \frac{x - 30}{\sqrt{1476 - 60x + x^2}} = 0}[/tex]

Take LCM

[tex]\mathbf{\frac{x\sqrt{1476 - 60x + x^2} +(x - 30)\sqrt{x^2 + 256}}{\sqrt{x^2 + 256} \times \sqrt{1476 - 60x + x^2}} = 0}[/tex]

Simplify

[tex]\mathbf{x\sqrt{1476 - 60x + x^2} +(x - 30)\sqrt{x^2 + 256} = 0}[/tex]

Rewrite as:

[tex]\mathbf{x\sqrt{1476 - 60x + x^2} =-(x - 30)\sqrt{x^2 + 256} }[/tex]

Square both sides

[tex]\mathbf{x^2(1476 - 60x + x^2) =(x^2 - 60x + 900)(x^2 + 256) }[/tex]

Expand

[tex]\mathbf{1476x^2 - 60x^3 + x^4 =x^4 - 60x^3 + 900x^2 + 256x^2 - 15360x + 230400}[/tex]

Simplify

[tex]\mathbf{1476x^2 - 60x^3 + x^4 =x^4 - 60x^3 + 1156x^2 - 15360x + 230400}[/tex]

Evaluate like terms

[tex]\mathbf{1476x^2 = 1156x^2 - 15360x + 230400}[/tex]

Rewrite as:

[tex]\mathbf{1476x^2 - 1156x^2 + 15360x - 230400 = 0}[/tex]

[tex]\mathbf{320x^2 + 15360x - 230400 = 0}[/tex]

Divide through by 320

[tex]\mathbf{x^2 + 48x - 720 = 0}[/tex]

Using a calculator, we have:

[tex]\mathbf{x = \{12,-60\}}[/tex]

The value of x cannot be negative.

So, we have:

[tex]\mathbf{x = 12}[/tex]

Hence, the rope should be placed at 12 feet from the 16 ft pole

Read more about minimizing lengths at:

https://brainly.com/question/15174196

Ver imagen MrRoyal