Answer:
[tex]\frac{R_{s} }{R_{p} } =\frac{R_{1} }{R_{2} }+\frac{R_{2} }{R_{1} } +2[/tex]
Explanation:
We have series and parallel combination of two resisters [tex]R_{1}[/tex] and [tex]R_{2}[/tex].
Series combination is
[tex]R_{s}= R_{1}+R_{2}[/tex] and Parallel is [tex]R_{p} = (\frac{1}{R_{1}}+\frac{1}{R_{2}} )^-1[/tex]
Now dividing series equivalent resistance by parallel resistance gives us
[tex]\frac{R_{s} }{R_{p} } =\frac{R_{1} }{R_{2} }+\frac{R_{2} }{R_{1} } +2[/tex].
Note! series Combination is simply superposition of two elements (resisters in this case ) in a circuit.