The exponential model Upper A equals 925.2 e Superscript 0.027 t describes the​ population, A, of a country in​ millions, t years after 2003. Use the model to determine when the population of the country will be 1504 million.

Respuesta :

Answer:

In  2021 , the population of the country will be 1504 million

Step-by-step explanation:

We are given that

[tex]A=925.2e^{0.027t}[/tex]

Where A(in millions)

Time,t=After 2003

We have to find the population of the country will be 1504 million.

Substitute the values

[tex]1504=925.2e^{0.027t}[/tex]

[tex]e^{0.027t}=\frac{1504}{925.2}[/tex]

[tex]e^{0.027t}=1.626[/tex]

[tex]0.027t=ln(1.626)[/tex]

[tex]0.027t=0.486[/tex]

[tex]t=\frac{0.486}{0.027}[/tex]

[tex]t=18[/tex]

After 18 years means=2003+18=2021

In 2021 , the population of country will be 1504 million.