Respuesta :
Answer: (a) The solubility of CuCl in pure water is [tex]1.1 \times 10^{-3} M[/tex].
(b) The solubility of CuCl in 0.1 M NaCl is [tex]9.5 \times 10^{-3} M[/tex].
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.
[tex]CuCl(s) \rightarrow Cu^{+}(aq) + Cl^{-}(aq)[/tex]
Initial: 0 0
Change: +x +x
Equilibm: x x
[tex]K_{sp} = 1.2 \times 10^{-6}[/tex]
And, equilibrium expression is as follows.
[tex]K_{sp} = [Cu^{+}][Cl^{-}][/tex]
[tex]1.2 \times 10^{-6} = x \times x[/tex]
x = [tex]1.1 \times 10^{-3} M[/tex]
Hence, the solubility of CuCl in pure water is [tex]1.1 \times 10^{-3} M[/tex].
(b) When NaCl is 0.1 M,
[tex]CuCl(s) \rightarrow Cu^{+}(aq) + Cl^{-}(aq)[/tex], [tex]K_{sp} = 1.2 \times 10^{-6}[/tex]
[tex]Cu^{+}(aq) + 2Cl^{-}(aq) \rightleftharpoons CuCl_{2}(aq)[/tex], [tex]K = 8.7 \times 10^{4}[/tex]
Net equation: [tex]CuCl(s) + Cl^{-}(aq) \rightarrow CuCl_{2}(aq)[/tex]
[tex]K' = K_{sp} \times K[/tex]
= 0.1044
So for, [tex]CuCl(s) + Cl^{-}(aq) \rightarrow CuCl_{2}(aq)[/tex]
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = [tex]\frac{CuCl_{2}}{Cl^{-}}[/tex]
0.1044 = [tex]\frac{x}{0.1 - x}[/tex]
x = [tex]9.5 \times 10^{-3} M[/tex]
Therefore, the solubility of CuCl in 0.1 M NaCl is [tex]9.5 \times 10^{-3} M[/tex].