Respuesta :

Answer:

  • cos(2Ф) = cos²(Ф) -sin²(Ф)
  • cos(2Ф) = 1 -2sin²(Ф)
  • cos(2Ф) = 2cos²(Ф) -1

Step-by-step explanation:

The angle sum formula for cosine is ...

  cos(α+β) = cos(α)cos(β) -sin(α)sin(β)

When we have α = β = Ф, this becomes ...

  cos(Ф+Ф) = cos(Ф)cos(Ф) -sin(Ф)sin(Ф)

  cos(2Ф) = cos²(Ф) -sin²(Ф)

The "Pythagorean identity" can be used to write this in terms of sine or cosine.

  cos(2Ф) = (1 -sin²(Ф)) -sin²(Ф)

  cos(2Ф) = 1 -2sin²(Ф)

or

  cos(2Ф) = cos²(Ф) -(1 -cos²(Ф))

  cos(2Ф) = 2cos²(Ф) -1