Respuesta :

Answer:

Quadratic formula: -5-√33/(under) 2      -5+√33/(under) 2

Using PQ formula: -5/2- √33/2        -5/2+ √33/2

Completing the square: -  √33+5/2                 √33-5/2  

Numbers of real solutions: 2

Step-by-step explanation:

The solution of the given equations is [tex]x=\frac{-5+\sqrt{33}}{2},\:x=\frac{-5-\sqrt{33}}{2}[/tex]

We have given that,

x^2 + 5x = 2

We can write it as,

[tex]x^2+5x-2=0[/tex]

What is the quadratic formula?

[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4\cdot \:a\cdot \left(c\right)}}{2\cdot \:a}[/tex]

[tex]x_{1,\:2}=\frac{-5\pm \sqrt{5^2-4\cdot \:1\cdot \left(-2\right)}}{2\cdot \:1}[/tex]

[tex]x_{1,\:2}=\frac{-5\pm \sqrt{33}}{2\cdot \:1}[/tex]

[tex]x_1=\frac{-5+\sqrt{33}}{2\cdot \:1},\:x_2=\frac{-5-\sqrt{33}}{2\cdot \:1}[/tex]

[tex]x=\frac{-5+\sqrt{33}}{2},\:x=\frac{-5-\sqrt{33}}{2}[/tex]

Therefore the solution of the given equations is [tex]x=\frac{-5+\sqrt{33}}{2},\:x=\frac{-5-\sqrt{33}}{2}[/tex].

To learn more about the quadratic equation visit:

https://brainly.com/question/1214333

#SPJ2