Answer:
[tex]V_{s} = \frac{\pi}{4}\cdot D_{out}^{2} \cdot h -\frac{\pi}{4}\cdot (D_{out}-2\cdot t)^{2}\cdot (h-t)[/tex]
Step-by-step explanation:
The geometric description of the vase is described in the image attached below. The volume of the solid part of the vase is:
[tex]V_{s} = V_{out} - V_{in}[/tex]
[tex]V_{s} = \frac{\pi}{4}\cdot D_{out}^{2} \cdot h -\frac{\pi}{4}\cdot (D_{out}-2\cdot t)^{2}\cdot (h-t)[/tex]
Where:
[tex]D_{out}[/tex] - Outer diameter, in centimeters.
[tex]t[/tex] - Vase thickness, in centimeters.