A tank at is filled with of chlorine pentafluoride gas and of sulfur hexafluoride gas. You can assume both gases behave as ideal gases under these conditions. Calculate the mole fraction and partial pressure of each gas, and the total pressure in the tank. Be sure your answers have the correct number of significant digits.

Respuesta :

Answer:

- Mole fraction of Chlorine Pentafluoride

= 0.265

- Partial Pressure of Chlorine Pentafluoride

= 16.05 kPa

- Mole fraction of Sulfur Hexafluoride

= 0.735

- Partial Pressure of Sulfur Hexafluoride

= 44.53 kPa

Total Pressure exerted by the gases = 60.58 kPa

Explanation:

First of, we calculate the number of moles of each gas present.

Number of moles = (Mass)/(Molar Mass)

For ClF₅

Mass = 4.28 g

Molar Mass = 130.445 g/mol

number of moles of Chlorine Pentafluoride

= (4.28/130.445) = 0.0328 moles

For SF₆

Mass = 13.3 g

Molar Mass = 146.06 g/mol

number of moles of Sulfur Hexafluoride

= (13.3/146.06) = 0.0911 moles

Total number of moles present = 0.0328 + 0.0911 = 0.1239 moles.

Using the ideal gas equation

PV = nRT

P = total pressure in the tank = ?

V = volume of the tank = 5.00 L = 0.005 m³

R = molar gas constant = 8.314 J/mol.K

T = temperature of the tank = 20.9°C = 294.05 K

n = total number of moles present = 0.1239 moles

P × 0.005 = (0.1239 × 8.314 × 294.05)

P = 60,580.45 Pa = 60.58 kPa.

- Mole fraction of a particular component of interest = (number of moles of the component of interest) ÷ (total number of moles)

- Partial Pressure of a particular component of interest = (mole fraction of that component of interest) × (total pressure)

This is Dalton's law of Partial Pressure.

- Mole fraction of Chlorine Pentafluoride

= (0.0328/0.1239) = 0.265

- Partial Pressure of Chlorine Pentafluoride

= 0.265 × 60.58 = 16.05 kPa

- Mole fraction of Sulfur Hexafluoride

= (0.0911/0.1239) = 0.735

- Partial Pressure of Sulfur Hexafluoride

= 0.735 × 60.58 = 44.53 kPa

Total Pressure exerted by the gases = 16.04 + 44.53 = 60.58 kPa

Hope this Helps!!!